Frazionamento in Campo Flusso (FFF) e Spettrometria di massa

Valentina Marassi

- Department of Chemistry, University of Bologna, Via Selmi 2, 40126, Bologna, Italy
 - valentina.marassi@unibo.it

Convegno Regionale SIES Delegazione Emilia Romagna

Aula 1 – Complesso UniOne, Università di Bologna

Disclosures of Valentina Marassi

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Byflow srl				x			

Liquid biopsy and precision medicine

Circulating tumor cells Intact cancer cells, present as single or cluster, shed by primary and metastatic tumor

- Less invasive
- Early state information
- Based on cancer markers

Circulating free and tumor DNA Fragments of DNA released from cells routinary (cfDNA) and from tumor cells (ctDNA)

Extracellular vesicles Membrane-bound, shed by cells carrying cargo (nucleid acids, proteins) and membrane markers

- Requires isolation of analytes or
 - matrix-independent approaches
- Could enhance patient-centered medicine

Convegno Regionale SIES Delegazione Emilia Romagna **BIODSIA IIQUICIA:** CHE TRAFFICO IN PERIFERIA!

Liquid biopsy and precision medicine

Simultaneous multispecies and multisize info on intact analytes

- Correlatable results
- Complete mapping
- Transversal signature

Suitable for scarcely available samples

consumables

Provides fractions for further use

Convegno Regionale SIES Delegazione Emilia Romagna Biopsia liquida: che traffico in periferia!

Extracellular vesicles: the challenge

Limitations of conventional techniques (Ultracentrifugation, Size Exclusion, Ultrafiltration):

- S Limited Sample flexibility (UC, UF)
- Eipoproteins co-isolation (UC, SEC)
- **EVs damage/Functionality loss** (UC, SEC, UF)
- Sample dilution (SEC)
- 😣 Sample Loss (UF, UC)

🗴 Scale up

Adequate isolation technique required

Flow Field-Flow Fractionation: the soft touch

- Pseudo-chromatographic separation technique
- Hollow, porous channel
 - → Sample flexibility
 - \rightarrow Minimal sample pretreatment

\rightarrow Soft separation

• Versatility on working conditions

 \rightarrow Nativeness

• Analytes are size sorted

 \rightarrow Hydrodynamic radius determination

• Compatible with several detectors

Method basics

The focus flow can be exploited as a "sample outlet" for simultaneous recovery of filtered and unfiltered species

Convegno Regionale SIES Delegazione Emilia Romagna BIODSIA IIQUICIA: CHE TRAFFICO IN PERIFERIA!

AF4 Separation

Convegno Regionale SIES Delegazione Emilia Romagna BIODSIA IIQUIDA: CHE TRAFFICO IN PERIFERIA!

Online characterization

1) Multi Angle Light Scattering (MALS)

Online characterization

2) UV absorption and fluorescence

Spectral (composition) information

Coh

Bologna

Platform overview

Convegno Regionale SIES Delegazione Emilia Romagna BIODSIA IIQUICIA: CHE TRAFFICO IN PERIFERIA!

Platform overview

Convegno Regionale SIES Delegazione Emilia Romagna BIODSIA IIQUICIA: CHE TRAFFICO IN PERIFERIA! Bologna

Subpopulations sorting

Convegno Regionale SIES Delegazione Emilia Romagna BIODSIA IIQUICIA: CHE TRAFFICO IN PERIFERIA!

FFF sorting of Evs from serum, plasma and cell cultures

FFF sorting of Evs from traumatic brain injury

Unlike SEC, AF4 uses a smaller sample input volume and ensures less sample dilution in the fractionation process, and thus higher molecular signal and yield of EVs. AF4 fractionation shows a more efficient separation of protein from EV fractions with simultaneous monitoring of protein concentration, size distribution and molecular weight of particles in the sample

APO-A⁴

Mass spectrometry

To discover novel biomarkers EVs derived microRNA , metabolites, lipids, and proteins have been investigated .

- → Among the biological molecules, exosomal proteins are most intensively investigated as biomarkers for various diseases
- → LC-MS/MS-based proteome analysis of exosomes has become the most popular fundamental tool for the identification and characterization of exosomal proteins

Bottom-Up Approach (Proteolytic Digestion-Based)

- Proteins are enzymatically digested (e.g., with trypsin) into smaller peptides before MS analysis.
- Peptides are then analyzed using liquid chromatography-MS (LC-MS/MS) and identified by database searches.

Advantages:

High sensitivity and deeper proteome coverage Well-established workflows and databases for peptide identification Suitable for complex exosome samples

XDisadvantages:

Loss of information on post-translational modifications (PTMs) and protein isoforms

Requires protein digestion, increasing sample preparation complexity Peptide reconstruction to full-length proteins can be challenging

Top-Down Approach (Intact Protein Analysis)

- Intact proteins (without digestion) are directly analyzed using high-resolution MS.
- Enables identification of proteoforms, including PTMs and sequence variations.

Advantages:

Preserves complete protein structure, providing full proteoform characterization Direct detection of PTMs and isoforms

Reduces sample processing steps compared to bottom-up

XDisadvantages:

Lower sensitivity, especially for complex exosome samples Requires advanced MS instrumentation (e.g., Orbitrap, FT-ICR MS)

Challenging data analysis due to complex spectra

Steps for EV Analysis via Mass spectrometry

EV Isolation & Purification •Techniques: Ultracentrifugation, size-exclusion chromatography (SEC), precipitation, immunoaffinity, or field-flow fractionation (FFF) →Remove contaminants (e.g., proteins, lipoproteins) while preserving EV integrity

Proteomic Sample Preparation

Bottom-Up MS: Protein digestion (e.g., trypsin) →
Peptide cleanup

•Top-Down MS: Intact protein preparation without digestion

•Enrichment for **low-abundance proteins** may be necessary

EV Lysis & Protein Extraction
Methods: Detergent-based lysis,
ultrasonication, freeze-thaw cycles
→ Release EV proteins for MS analysis

Mass Spectrometry Analysis •Liquid Chromatography-MS (LC-MS/MS) for peptide separation •High-resolution MS (e.g., Orbitrap, FT-ICR, TOF-MS) for protein/peptide identification •DIA (Data-Independent Acquisition) or DDA (Data-Dependent Acquisition) strategies

Data Processing & Bioinformatics

•Peptide/Protein Identification (database search, spectral matching)

Proteoform & PTM Analysis (for top-down MS)

Convegno Regionale SIES Delegazione Emilia Roma (Label-free, SILAC, TMT/iTRAQ) BIODSIA IIQUIDA: CHE TRAFFICO IN PENIFYMAN & biomarker discovery analysis

Mass spectrometry

Mass spectrometry (MS), can identify and characterize molecular composition of vesicles

- \rightarrow MS is the major tool to assess protein composition of Evs in qualitative and quantitative proteomics approaches
- \rightarrow lipid and metabolite composition of vesicles might also be best assessed by MS techniques

Bologna

FFF + Mass spectrometry

Talanta Volume 276, 15 August 2024, 126216 Talanta

Native characterization and QC profiling of human amniotic mesenchymal stromal cell vesicular fractions for secretome-based therapy

Convegno Regionale SIES Delegazione Emilia Romagna BIODSIA IIQUICIA: CHE TRAFFICO IN PERIFERIA!

ASSEMbLe, "Immunomodulatory properties of the Amniotic Stromal cell S to nanotechnoLogy-aided delivery for controlled cretome: from Multi-omics profiling 128eFinbsteioart hritis" (PRIN 2017)

Summary

•Field-Flow Fractionation (FFF) is a powerful technique for size-based isolation of EVs, enabling better separation from contaminants like lipoproteins and protein aggregates.

•Mass Spectrometry (MS) plays a crucial role in EV characterization, offering insights into protein composition, biomarkers, and post-translational modifications (PTMs).

•Bottom-Up vs. Top-Down MS Approaches:

•Bottom-up provides **higher sensitivity** but loses information on intact proteoforms.

•Top-down preserves **full protein structure and PTMs** but faces challenges in sensitivity and data complexity.

•FFF-MS Integration: combining FFF with MS enhances the resolution and depth of EV proteomics.

•Future Perspectives: Further advancements in FFF and MS methodologies, instrumentation, and data analysis will improve biomarker discovery and clinical applications of EVs.

